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ABSTRACT
Recommender systems have recently been criticized for promot-
ing bias and trapping users into filter bubbles. This phenomenon
not only limits potential user interactions but also threatens the
broadness of content consumption. In a music recommender, for
example, this situation can limit user perspective as music allows
people to develop cultural knowledge and empathy. As a fundamen-
tal characteristic of users’ content consumption is its diversity, it is
necessary to break the bubbles and recommend potentially relevant
and diverse songs from outside the influence of such bubbles. To ad-
dress this problem, we present MRecuri (Music RECommender for
filter bUbble diveRsIfication), a music recommendation technique
to foster the diversity and novelty of recommendations. A prelimi-
nary evaluation over Last.fm listening data showed the potential of
MRecuri to increase the diversity and novelty of recommendations
compared with state-of-the-art techniques.
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• Information systems→ Social recommendation; •Comput-
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1 INTRODUCTION
Music streaming services have become popular in the last few
years, contributing to the democratization of music access [11]. In
most cases, recommender systems provide users with personalized
items similar to the content they have previously indicated an
interest. While this approach might help increase click rate, sales, or
conversion rates, it does not necessarily induce users to explore new
and diverse content [9]. Users with little or no exposure to diverse
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(or even contradicting) views can become unintendedly trapped
in an isolated filter bubble [9, 23]. Filter bubbles complement echo
chambers as both result in users consuming content aligned with
their views. In both cases, recommenders are induced to narrow
their suggestions, reinforcing user segregation and other biases [21].

While music access in streaming services seems fluid and di-
verse, platforms have been acknowledged to recommend items in
circumscribed tiers for users and listening environments in connec-
tion with social structures [16, 18, 20]. If streaming platforms foster
filter bubbles, users would not be encouraged to discover music
that differs from their taste, limiting their openness and cultural
awareness [16, 18, 29]. The need for promoting diverse and novel
content has also been acknowledged to create healthy consumption
patterns and contribute to streaming platforms’ success [12].

In this work, we tackle the music recommendation problem by
fostering track recommendation diversification in a filter bubble
setting. To this end, we present MRecuri, a Music RECommender
for filter bUbble diveRsIfication. This technique focuses on implic-
itly discovering and characterizing filter bubbles based on music
listening history, a music knowledge graph, and user social interac-
tions. Then, its goal is to present users with track recommendations
that challenge the similarities between the characteristics of the
listened tracks, thus helping to expand users’ listening horizons. To
support this proposal, we conducted a preliminary evaluation over
a Last.fm data collection and compared our technique with state-
of-the-art recommenders. Results showed that MRecuri allowed
recommending tracks that were likely to be relevant while being
different from the already known ones, fostering the exploration
of the content space and thus helping to reduce the filter bubble
effect in music recommendation.

2 RELATEDWORKS
In the music domain, recommenders aim to provide users with a set
of relevant tracks or artists based on indicators such as the listening
frequency, demographic user information, and acoustic features,
among others [28]. Traditionally, recommenders aim at maximizing
the relevance of the provided recommendations. Nonetheless, other
qualities have recently started to consider the long-term effects of
recommendations, such as diversity and retention [1].

Several works [6, 17, 31] have explored alternatives inspired by
Maximal Marginal Relevance (MRR) [3] to adjust recommendations
based on a pre-defined function considering both relevance and
diversity. Vargas and Castells [31] diversified recommendations ac-
cording to user sub-profiles based on item tags and then re-ranking
the recommendations made for each sub-profile. Di Noia et al. [6]
re-ranked recommendations based on users’ diversity proneness
towards different attributes (e.g., genre, actor, director). Note that if
users do not show sufficient proneness, they might not get diverse
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enough recommendations and thus, would remain in their filter
bubble. Finally, Lu and Tintarev [17] proposed tailoring diversity
importance based on users’ emotional stability, thus requiring users
to fill out a questionnaire or provide access to their social media to
infer their personality traits, which might not be simple.

In summary, as most techniques only consider diversity, there is
no guarantee that the new recommended elements will be novel.
In turn, users’ experiences might not be effectively broadened, con-
tributing to strengthening filter bubbles. Most studies either ignore
the existence of filter bubbles or assume their explicit existence.
In the first case, techniques might inadvertently perpetuate the
bubbles. In the second case, it is necessary to define the criteria
for finding the bubbles, including the selected technique and the
explicit relationships or interactions between nodes, which could
be computationally complex. In addition, most existing approaches
also ignore user context and social relations and how they affect
or model their interests [7, 22]. Instead, in MRecuri, community
structures or bubbles are implicitly induced to seamlessly adapt
to changes in content consumption patterns and user interactions.
This adaptive approach allows for more freedom in bubble defini-
tion and more sensitivity to changes in the network.

3 DIVERSIFYING MUSIC
RECOMMENDATIONS

A fundamental challenge for broadening users’ recommendations is
how to learn the dynamic filter bubble configurations based on the
consumed items and the social interactions between users. MRecuri
is designed to implicitly learn users’ consumption patterns to adapt
to their particularities, aiming to strike a balance between relevance
and diversity. MRecuri is inspired by FRediECH (a Friend Recom-
menDer for breakIng Echo CHambers) [30], which was devised
as an echo chamber-aware friend recommendation approach that
learns users and echo chamber representations from the shared con-
tent and past users’ and communities’ interactions to recommend
novel and diverse users in social media.

MRecuri’s overall architecture is schematized in Figure 1. It takes
as input the track knowledge graph, user listening history and
interactions. For each user, it outputs a ranking of tracks according
to their listening likelihood strength.
User representation. Users usually interact with others, which
can also affect their preferences. Despite traditionally associated
with homophily, Pálovics and Benczúr [22] showed that users in-
crease new content consumption after a friend listened to it, com-
pared to users who were not socially exposed to new content.
GCNs [14] allow representing nodes based on their characteristics
and those of their interactions. Here, users are represented based
on trainable embeddings of their latent features (𝑈 ) and the social
interaction graph. The GCN was implemented using Spektral1:

𝐺𝐶𝑁 = 𝜎 (�̂�− 1
2𝐴�̂�− 1

2𝑋𝑊 + 𝑏) (1)
Here, 𝜎 represents a linear activation function and 𝐴 the adja-

cency user matrix (i.e., the user social interactions). Then,𝐴 = 𝐴+ 𝐼
and 𝐷𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 , where �̂� is a diagonal matrix. The goal of �̂� is

to act as a normalizer of 𝐴 to avoid weights linearly scaling as the
number of user interactions increases. 𝑋 represents the defined

1https://graphneural.network/

user embeddings,𝑊 is a matrix of trainable weights, and 𝑏 is the
trainable bias vector. The output of this GCN represents users and
their interactions, and it is concatenated with the user embeddings
to generate the intermediate user representation. This concatena-
tion aims at better learning each user’s particularities, regardless
of their social connections, while facilitating the training process.
Track representation. In addition to acoustic or audio features,
music tracks are inherently related [11, 12]. Inspired by Castellano
et al. [4], we defined a music knowledge graph to represent tracks
and artists. Knowledge graphs have emerged as abstractions to
organize structured knowledge and integrate different types of in-
formation. Tracks are connected to tags, while artists are connected
to tracks and tags. In the future, other relations could be included.

Tracks are represented by their trainable embeddings, 11 features
extracted from Spotify (energy, instrumentalness, liveness, speech-
niness, acousticness, danceability, valence, mode, key, loudness,
and tempo), and the artist and average tags embedding. These em-
beddings and the Spotify features are concatenated to generate the
intermediate track representation. Despite tracks, tags and artists
relations were extracted from the built knowledge graph, they are
not represented by a graph as artists and tags might be shared by
multiple tracks, and thus the graph would be dense, increasing the
computational complexity (and the need for hardware resources).
Making recommendations. The prediction model is inspired by
the Deep & Wide architecture and aims to predict the likelihood of
a particular user-track combination. The Deep part aims to better
generalize over the unseen interactions, while the Wide part aims
to better learn the implicit characteristics of users.

The output of the Deep part is obtained by concatenating user
and track representations and passing them through 3 dense layers
with linear activation functions. These multiple layers allow the
model to learn non-linear relations between users and tracks. For
the Wide part, user, track, artist, and average tag embeddings are
combined and passed through a dense layer. The combine operation
(green boxes) concatenates users and tracks. Given user matrix
𝑈 ∈ R𝑛×𝑚1 where 𝑛 is the number of users and𝑚1 the size of user
embeddings, and track matrix 𝑇 ∈ R𝑡×𝑚2 where 𝑡 is the number of
tracks, and𝑚2 the size of track embeddings, the combined matrix
belongs to R(𝑛×𝑡 )𝑥 (𝑚1+𝑚2) whose rows are the concatenation of
each row of𝑈 with each row of 𝑇 . Despite this allows estimating
all listening likelihood strengths simultaneously, due to hardware
limitations, estimations are made for a user-track pair at the time.

Finally, the estimated listening strength is obtained by adding
the Wide and Deep outputs. This strength can also be seen as the
estimation of the times a user would listen to a track (referred to
as scrobbles2). It is assumed that the higher the strength, the better
the balance between the relevance of recommendations and their
distance to users’ filter bubbles.
Model training. We defined a loss function (Eq. 2) based on the
distance between users and tracks, where 𝑌𝑢𝑡 is the number of
scrobbles of user 𝑢 for track 𝑡 . Since 3% of scrobbles differed in at
least one magnitude order from the others, they were set to the
maximum number of the other 97%. 𝑌𝑢𝑡 represents the predictions,
|𝐸 | the number of predictions, and 𝑑 (𝑢, 𝑡) represents the distance
2This term comes from scrobbling, which represents the act of logging the songs that
a user has listened to.
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Figure 1: Schematic diagram of MRecuri

between user 𝑢 and track 𝑡 . As scrobbles might span over an exten-
sive range, the logarithm helps to scale their values closer to zero,
which facilitates learning and helps to avoid exploding gradients.
Then, for negative sampling, scrobbles were multiplied by 2 to avoid
a prediction of 0 when having a scrobble of 1.

𝐿

(
𝑌,𝑌

)
=

∑
𝑑 (𝑢, 𝑡 )𝛽

(
ˆ𝑌𝑢𝑡 − log2 (2𝑌𝑢𝑡 )

)2
|𝐸 | (2)

While it is expected that users and already listened tracks will
show a high strength, distance aims at weighting the actual loss of
the network in a way that interactions between users and tracks
that are farther away (i.e., do not belong to the user filter bubble)
will carry a higher weight that interactions in the same bubble.
Then, this loss definition favours recommendation diversity by
learning the structure of filter bubbles without explicitly finding
them, allowing for more flexibility in bubble definition. In this sense,
hyperparameter 𝛽 allows tuning weight distances during training,
i.e., whether to receive closer and more accurate recommendations
(𝛽 close to zero, which reduces the relevance of distance and better
learning user preferences in their closer communities ) or farther
and more diverse recommendations (𝛽 close to one). After prelimi-
nary evaluations, 𝛽 was set to 0.75.

In addition to scrobbles, which represent the positive interactions
of a user with the listened tracks, we applied a negative sampling
with a 1 : 1 ratio, where 𝑌𝑢𝑡 was set to 0.5 so that log2 (2𝑌𝑢𝑡 ) would
be zero. Unlike the BPR [24] framework, the network independently
processes negative and positive samples, learning that negative
instances should decrease the strength of the interaction. 𝑑 (𝑢, 𝑡)
was replaced by 𝑑𝑛𝑒𝑔 (𝑢, 𝑡) = 1 − 𝑑 (𝑢, 𝑡) to prevent the negative
sampling from penalizing tracks that are unlikely to have already
been listened but could be relevant.

A 10% edge dropout was introduced to the GCN training to avoid
overfitting over the graph structure and improve generalization.
This is similar to DropEdge [25], with the difference that dropout is
applied over �̂�−1/2𝐴�̂�−1/2 instead of𝐴, thus avoiding recomputing
�̂�−1/2𝐴�̂�−1/2 for each mini-batch, thus increasing the efficiency.

Precomputed distances. Distance 𝑑 (𝑢, 𝑡) in the loss function
was precomputed based on user and track embeddings that are
different from those of the model to avoid introducing a depen-
dency between the model and the distance function. Training is
based on Word2Vec [19], where the goal is to determine whether a
user listened to a track, regardless of its scrobbles. A binary cross-
entropy loss function (Eq. 3) is used, where 𝑤𝑢 and �̂�𝑡 represent
the user and track embeddings, 𝜎 is the sigmoid function, and 𝐴𝑢𝑡
is set to 1 if user 𝑢 listened to track 𝑡 , and 0 otherwise. Negative
sampling is also applied to this training process with a ratio 1 : 1,
where a user and a track are randomly selected.

𝐿𝑑𝑖𝑠 =
−∑ (𝐴𝑢𝑡 log (𝜎 (𝑤𝑢 · �̂�𝑡 )) + (1 −𝐴𝑢𝑡 ) log (1 − 𝜎 (𝑤𝑢 · �̂�𝑡 )))

|𝑁 | (3)

Distance 𝑑 is defined by the cosine between user and track em-
beddings (Eq. 4 and Eq. 5), where 𝜇cos and 𝜎cos are the mean and
standard deviation of cos(𝑤𝑢 ,𝑤𝑡 ) for each user-track pair. This
definition aims at better learning the relation between farther users
and tracks (for which there are fewer and more diverse examples)
rather than closer tracks and users. This formulation centers on
the media of the cosine between users and tracks during training,
adjusting the values according to their deviation, providing a bet-
ter adaptation than the traditional cosine distance to situations in
which user and track vectors are close. Clipping values were set to
reduce the influence of users over the loss function.

𝑑 (𝑢, 𝑡 ) =


0.1 if 𝑑𝑟𝑎𝑤 (𝑢, 𝑡 ) < 0.1
0.9 if 𝑑𝑟𝑎𝑤 (𝑢, 𝑡 ) > 0.9
𝑑𝑟𝑎𝑤 (𝑢, 𝑡 ) otherwise

(4)

𝑑𝑟𝑎𝑤
(
𝑢𝑖 ,𝑢 𝑗

)
= 1 − cos (𝑤𝑢 , �̂�𝑡 ) − (𝜇cos − 2𝜎cos)

4𝜎cos
(5)

4 EXPERIMENTAL SETTINGS
Data collection. Evaluation was based on data collected from
Last.fm. We focused on the track listening history and the users’
social networks. Based on the social interactions collected by Zhang
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#Users 3,307 #Tracks 252,014 #Artists 28,540

avg (± std) 25% - 50% - 75% quantiles

Tracks per User 912 (± 1266) 624 - 854 - 1043
Scrobbles per User 48 (± 73) 11 - 28 - 58

Social relations per User 86 (± 85) 29 - 59 - 118

Table 1: Data collection details

et al. [32]3, we selected the top 5% of users with the highest number
of social connections and scrobbles. We collected the scrobble his-
tory for each of the 3, 307 selected users using the Last.fm API. From
the set of over 1 million tracks listened by the selected users, we
selected approximately 252𝑘 tracks with the highest number of lis-
teners among the selected users, with 99% of users associated with
over 40 songs. For each selected track, we collected the total number
of scrobbles and listeners, tags, artist (and their tags) and Spotify
audio features4. To make features’ scores comparable, tempo was
standardized, and loudness was applied a logarithm transformation.
Table 1 summarizes the basic statistics of the collected data5.
Baselines. MRecuri was compared to 9 different recommenders.
When available, the original implementations were used. Parame-
ters were optimized as described in the original studies. First, two
trivial and non-personalized reference baselines: popularity (i.e.,
tracks with the highest ratio of scrobbles and listeners were recom-
mended), and a random recommender, as a lower bound reference.
Second, a content-based technique, in which, based on prelimi-
nary evaluations, tracks were represented by the averageWord2Vec
embedding of their tags, and users were represented by the centroid
of the listened track vector. Then, recommendations were made
based on the cosine similarity between a track and the user repre-
sentation. Third, several traditional and state-of-the-art user-item
recommender techniques: i) ImplicitMF [13], a top-performing
matrix factorization technique based on a factor model tailored
for implicit feedback settings. ii) GraphRec [8], a graph neural
network that jointly represents social interactions, item features,
and ratings. iii)MultVAE [15], a neural generative model based on
variational autoencoders and multinomial conditional likelihood.
Finally, we considered diversity-oriented techniques: i) Rank Ag-
gregation (RA) techniques based on Copeland’s ranking method.
The base rankings were built using ImplicitMF and listing items
according to their diversity and novelty scores (as defined in Sec-
tion 4) over their content-based representation. ii) An MMR [3]
inspired technique. The base recommender was set to ImplicitMF.
Diversity was measured considering the cosine similarity of the
content-based representation of items, as in [6]. iii) VC Vargas
and Castells [31]. Profiles were based on the top-20 tags, and base
recommendations were obtained based on ImplicitMF.
Evaluation metrics. In addition to relevance-based metrics (pre-
cision, nDCG), recommendations were assessed considering how
they help users outing from their bubbles [27]. We considered
variations of intra-list dissimilarities [26] to assess diversity (i.e.,
differences within an experience, in this case the set recommended

3The original set of users can be retrieved from https://www.aminer.cn/cosnet.
4https://developer.spotify.com/documentation/web-api/reference/#object-
audiofeaturesobject
5The final retrieved set of users and tracks with their metadata and the resulting
graphs are available at the companion repository: https://github.com/tommantonela/
umap2022-mrecuri.

items) and novelty (i.e., differences between past and present ex-
periences, in this case, the known and recommended items) [5].
Following Nguyen et al. [21], we consider diversity and novelty as
proxies for measuring the filter effect. Then, a diversity/novelty
increment is assumed to imply a decrease in the filter bubble effect.

Dissimilarities were measured based on the Euclidean distance
of structural and content-based vectors. For computing the struc-
tural distances, each user was represented by a vector defining
the consumption rate of tracks belonging to the different track
communities [10]. Such communities were discovered based on a
co-listened track graph (i.e., two tracks are connected if they were
listened by the same user) using the Louvain algorithm [2]. On the
other hand, content-based dissimilarity was computed based on the
Word2Vec representation of tracks’ tags6. User representation was
defined as the average representation of the listened tracks.

To compute diversity and novelty, we assumed that users would
listen to all recommendations, i.e., all recommendationswere deemed
correct. Although this assumption might not be realistic [27], it
allows observing how recommendations could shape the future
network. Diversity was computed by comparing all recommended
tracks with each other, while novelty was computed by comparing
all listened tracks (training set) vs. all recommended tracks.

Implementation details. Themodel was implemented on Tensor-
Flow. The optimizer was set to Adam with a learning rate of 1𝑒 − 3,
𝛽1 = 0.9 and 𝛽2 = 0.999. The dimension of all embeddings was
set to 64, while for the dense layers, it was set to 32. The learning
process was stopped once no loss changes were observed, reach-
ing convergence after 10 epochs7. The model was trained on an
Asus Predator Helios 300 with 16Gb RAM, an i7-11800H, and an
NVidia GeForce RTX 3060 6Gb. Training and recommendations
took approximately 6 hs and 15 minutes, respectively.

Evaluation was performed in an offline setting over the same
data partitions. User scrobbles were temporally split. For each user,
the first 70% of listened tracks were used as training, while the
remaining tracks were used as the test set. We defined a threshold
to select the top-𝐾 recommended tracks, where 𝐾 was set to 10 as
over 96% of users had 10 tracks in the test set. Recommendations
were considered correct if they appeared in the test set.

5 EVALUATION
Table 2 presents the obtained results. We report the average score
across all users and the standard deviation. We also report the re-
sults of a paired statistical analysis with an alpha value of 0.01. For
each metric, the best three results are shown in bold+underline,
bold and underline, respectively. For reporting the diversity and
novelty of the original user-track graph, we computed how di-
verse/novel are tracks in the test set regarding the tracks in the
training set.

Random and GraphRec achieved the lowest relevant results (with
differences up to 71% and 85% in terms of precision and nDCG). Con-
versely, they achieved high diversity/novelty results, with GraphRec
among the best performing techniques. There is a trade-off between

6As an example, according to their tags, “Yesterday" (The Beatles) would be similar to
“Love of my life" (Queen), but dissimilar to “Sunset Garage" (Duran Duran).
7More details and implementations can be found at the companion repository.
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Precision nDCG Content-based dissimilarities Structural dissimilarities
Diversity Novelty Diversity Novelty

MRecuri 0.28 ± 0.198 0.648 ± 0.227 0.471 ± 0.014 0.547 ± 0.031 0.128 ± 0.009 0.387 ± 0.092

Random 0.101* ± 0.004 0.446* ± 0.201 0.496 ± 0.028 0.485 ± 0.023 0.224 ± 0.075 0.282* ± 0.045
Popularity 0.203 ± 0.133 0.581 ± 0.237 0.402* ± 0.017 0.46* ± 0.026 0.131 ± 0.015 0.279* ± 0.031

Content-based 0.168* ± 0.124 0.522 ± 0.215 0.173* ± 0.062 0.388* ± 0.046 0.219 ± 0.061 0.247* ± 0.033
ImplicitMF 0.366 ± 0.238 0.699 ± 0.226 0.376* ± 0.061 0.417* ± 0.042 0.146 ± 0.049 0.228* ± 0.036
GraphRec 0.1* ± 0.03 0.391* ± 0.149 0.497 ± 0.011 0.542 ± 0.012 0.325 ± 0.007 0.317* ± 0.022
MultVAE 0.348 ± 0.245 0.686 ± 0.231 0.414* ± 0.07 0.457* ± 0.049 0.176 ± 0.061 0.236* ± 0.039

Rank Aggregation 0.241 ± 0.164 0.57 ± 0.214 0.453* ± 0.118 0.531 ± 0.043 0.179 ± 0.054 0.238* ± 0.038
MMR-inspired 0.247 ± 0.172 0.687 ± 0.245 0.41* ± 0.152 0.515 ± 0.04 0.176 ± 0.054 0.236* ± 0.037

VC 0.288 ± 0.189 0.6 ± 0.216 0.421* ± 0.058 0.469* ± 0.041 0.195 ± 0.055 0.243* ± 0.037

Original user-track graph - - 0.472 ± 0.066 0.484 ± 0.047 0.229 ± 0.045 0.246 ± 0.031

Table 2: Recommendation results comparison for 𝑘 = 10. (* indicates statistically significant differences favouring MRecuri)

relevance and diversity/novelty, as techniques achieving high rele-
vance also achieved low diversity/novelty. Popularity was an excep-
tion as it achieved a better balance between relevance and diversity,
despite showing a lower diversity/novelty than the original graph.
These results might indicate that despite being popular tracks, they
might be different from what users usually listen to, thus improv-
ing diversity/novelty. On the other hand, ImplicitMF and MultVAE
achieved the highest precision and nDCG while achieving lower
diversity/novelty than the original graph.

Regarding the diversity-oriented techniques, the highest rele-
vance was observed for MMR, while the most diverse and novel
results were observed for RA. Except for structural diversity, re-
sults were outperformed by MRecuri. The RA baseline’s best results
were achieved using Copeland’s method to aggregate three rank-
ings: ImplicitMF and diversity and novelty rankings based on a
track representation including both tag embeddings and Spotify
features. On the other hand, the best results for the MMR baseline
were observed when representing tracks only using the tag embed-
dings and setting the diversity weight to 0.9. For VC, only minor
differences were observed when varying 𝜆.

MRecuri was among the best performing techniques for most
metrics (even achieving the highest novelty), including precision
and nDCG, with average improvements of 56% and 19%, respec-
tively. In terms of diversity/novelty, except for structural diversity,
MRecuri was able to improve the scores of the original graph. The
average diversity/novelty differences favouring MRecuri regard-
ing the simpler, state-of-the-art, and diversity-oriented baselines
were 25%, 9%, and 15%, respectively. These results show that di-
versity/novelty can be improved while providing relevant recom-
mendations. In general, novelty was higher than diversity, meaning
that even when recommending similar tracks, they differed from
those in the listening history. The lowest results for MRecuri were
observed for structural diversity, implying that the recommended
ranking included tracks with similar co-listened patterns. Nonethe-
less, MRecuri also achieved the highest structural novelty results,
implying that recommendations were outside the influence of the
co-listened community of the already listened tracks, which can
effectively broaden users’ music perspectives.

6 CONCLUSIONS
This work presented MRecuri, a music recommender fostering con-
tent diversification in a filter bubble setting. MRecuri focused on im-
plicitly characterizing filter bubbles based on user listening history,
social interactions, and a music knowledge graph. The performed
offline evaluation showed the potential of MRecuri for expanding
users’ listening diversity and novelty compared with state-of-the-
art techniques, while maintaining competitive precision and nDCG.

Several aspects could be tackled in future works. First, perform
a more extensive evaluation in large-scale scenarios to fully assess
the technique’s usefulness, generalizability, and scalability. Second,
perform an ablation study to assess the contribution (or effects)
of the different components, particularly, the interplay of informa-
tion sources and their contributions to the final recommendations,
and the effect of negative sampling and the defined distance met-
ric. Third, considering the particularities of music consumption,
in which tracks are rarely isolatedly consumed, MRecuri could be
extended to include information of the listening history as an or-
dered sequence. Fourth, the technique could be enriched to provide
explanations and thus increase the transparency and trust of rec-
ommenders. Finally, a user study should be conducted to assess
recommendations’ perceived relevance and diversity.
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