

Haven't I just listened to this?

Exploring diversity in music recommendations

ANTONELA TOMMASEL

JUAN MANUEL RODRIGUEZ

DANIELA GODOY

Filter bubbles & recommendation

- Music streaming services have become popular in the last few years, contributing to the democratization of music access.
- While **recommending "similar" content** might help increase click rate, sales, or conversion rates, **it does not necessarily induce users to explore new and diverse content**.
- Users with little or no exposure to diverse views can become unintendedly trapped in filter bubbles.
- While music access in streaming services seems fluid and diverse, platforms have been acknowledged to recommend items in circumscribed tiers for users and listening environments in connection with social structures.
- If streaming platforms foster filter bubbles, users would not be encouraged to discover music that differs from their taste, limiting their openness and cultural awareness.

Filter bubbles & recommendation

- Music streaming services have become popular in the last few years, contributing to the democratization of music access.
- While **recommending "similar" content** might help increase click rate, sales, or conversion rates, **it does not necessarily induce users to explore new and diverse content**.
- Users with little or no exposure to diverse views can become unintendedly trapped in filter bubbles.
- While music access in streaming services seems fluid and diverse, platforms have been acknowledged to recommend items in circumscribed tiers for users and listening environments in connection with social structures.
- If streaming platforms foster filter bubbles, users would not be encouraged to discover music that differs from their taste, limiting their openness and cultural awareness.

Harnessing recommender systems with filter bubble-aware mechanisms becomes essential to **open users perspectives**, foster **healthy consumption patterns** and **increase** the user-perceived **quality** of recommender systems.

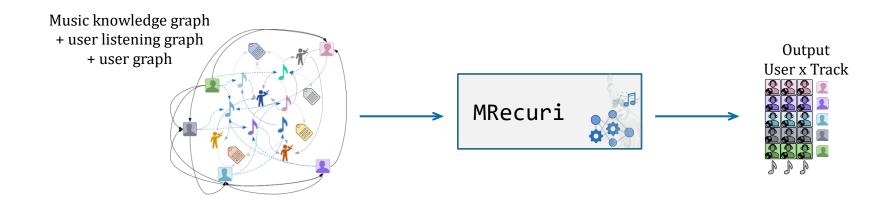
Filter bubble aware recommendations

The problem

We tackle the **music recommendation problem** by fostering **track recommendation diversification** in a **filter bubble awareness** setting.

We rely on <u>implicitly modeling the filter bubbles</u> membership of users to present them with **relevant friend recommendations from outside** the influence of their community.

Music RECommender for filter bUbble diveRsIfication



MRecuri

Music REcommender for filter bUbble diveRsIfication



Experimental evaluation Data

- Evaluation was based on data collected from Last.fm.
- We focused on the track listening history and the users' social networks.
- For each of the **3,307 users**, we collected their scrobble history using the Last.fm API.
- From the set of over 1 million tracks listened by the selected users, we selected approximately **252k tracks** with the highest number of listeners among the selected users, with 99% of users associated with **over 40 songs**.
- For each selected track, we collected the **total number of scrobbles** and listeners, tags, artist (and their tags) and Spotify audio features.

	Avg (± std)	
#users	3,307	
#tracks	252,014	
#artists	28,540	
Tracks per user	912 (± 1266)	
Scrobbles per user	48 (± 73)	
Interactions per user	87 (± 85)	

Experimental evaluation

Baselines

Trivial, non-personalized and traditional recommenders.

Random

Popularity

Content

Adapted traditional and stateof-the-art user-item recommendation techniques.

ImplicitMF

GraphRec

MultVAE

Techniques focused on enhancing the structural diversity of recommendations to mitigate filter bubbles.

Rank Aggregation

MMR

VC

Experimental evaluation

Evaluation

Relevance

- Precision@k
- DCG@k

Diversity

- Variations of intra-list dissimilarities were used to assess:
 - **Diversity** (i.e., differences within the recommended list)
 - Novelty (i.e., differences between the known users and the recommended ones).
- Euclidean distance over structural and content-based representations.
- All evaluations were performed over the same data partitions and evaluated using the same set of metrics.
- We selected the top-10 recommended users (96% of users have 10 or more interactions).
- Recommendations were considered correct if they appeared in the test set.
- Training set: the first 70% listened tracks of each user.
- Test set: remaining interactions.

Experimental evaluation

Results - Highlights

	Traditional	State-of-the-art	Original structure
Avg. relevance Improvements	60%	29%	-
Avg. diversity/novelty improvements	25%	20%	6%

- MRecuri was among the best performing techniques for most metrics, including precision and nDCG.
- MRecuri was able to improve the diversity/novelty of the original graph.
- In general, novelty was higher than diversity, meaning that even when recommending similar tracks, they
 differed from those in the listening history.
- MRecuri achieved the highest structural novelty results, implying that recommendations were outside the
 influence of the co-listened community of the already listened tracks, which can effectively broaden users' music
 perspectives.

Summary & conclusions

• We developed MRecuri inspired by a **graph convolutional network** and a **Deep & Wide** architecture, focused on implicitly characterizing filter bubbles based on user listening history, social interactions, and a music knowledge graph to balance the <u>relevance</u>, <u>diversity</u> and <u>novelty</u> of recommendations.

• MRecuri showed the potential for **expanding users' listening diversity and novelty** compared with state-of-the-

art techniques while maintaining competitive precision and nDCG results.

- <u>Data and code</u> are publicly available.
 - Perform a more extensive evaluation in large-scale scenarios to fully assess the technique's usefulness, generalizability, and scalability.
 - Perform an ablation study to assess the contribution (or effects) of the different components.
 - Include information of the listening history as an ordered sequence.
 - Explanations to better guide users in broadening their interactions.

Thanks!

Questions?

Haven't I just listened to this?

Exploring diversity in music recommendations

ANTONELA TOMMASEL

JUAN MANUEL RODRIGUEZ

DANIELA GODOY

